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Abstract： 

Severe droughts in the Southern Great Plains (SGP: Kansas, Oklahoma, and Texas) in recent 

years have reduced the productivity of tallgrass prairie and resulted in substantial economic 

losses to the beef cattle industry in this region. Understanding spatial and temporal patterns of 

agricultural drought in the SGP can help ranchers to develop and implement drought mitigation 

strategies. In this study, the Land Surface Water Index (LSWI), calculated from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) near infrared and shortwave infrared bands, 

was used to assess agricultural drought in the tallgrass prairie region of the SGP during 2000-

2013. The number of consecutive days with LSWI < 0 (DNLSWI) during the growing season 

was defined as the drought duration, which, was then used to identify and analyze frequency of 

summer drought and whole growing season drought (WGSD). The spatial pattern of DNLSWI 

was consistent with the east-to-west decreasing precipitation gradient across the SGP region. 

Summer drought duration as depicted by the DNLSWI in the western portion of the study area 

was around one and a half month. The occurrence of WGSD increased from one year in the east 

to up to six years in the west, demonstrating the susceptibility of the tallgrass prairie region to 

drought. In addition to the total amount of precipitation, its intra-annual distribution also played 

an important role in drought development. A comparison with other widely used national 

drought products, namely the Evaporative Stress Index (ESI), the Vegetation Drought Response 

Index (VegDRI), and the United States Drought Monitor (USDM), shows that LSWI-based 

drought has good agreement with ESI and USDM. Quantitative analyses indicate that LSWI-

based drought agreed better with ESI in severe drought conditions than in moderate or pre-

drought conditions. Severe drought periods characterized by the USDM also had low LSWI 

values. The areas affected by drought derived from the LSWI-based drought index were 
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significantly correlated with hay production. As an indicator of vegetation water stress at 

moderate spatial resolution (~500 m), the LSWI has the potential to show drought conditions for 

an individual ranch and offer guidance for drought mitigation activities and livestock production.  

Keywords: Tallgrass prairie, agricultural drought, Land Surface Water Index (LSWI), Southern 

Great Plains (SGP) 
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1. Introduction 

Drought is a complex natural hazard caused by a deficit in precipitation over different 

time periods (McKee et al. 1993). It is one of the most costly natural disasters and imposes wide-

ranging impacts on the economy, environment, and society (Hayes et al. 2012; Mishra and Singh 

2010). Tallgrass prairie, an important native grassland type in the Southern Great Plains (SGP: 

Kansas, Oklahoma, and Texas) of the United States (U.S.), is susceptible to frequent droughts 

(Basara et al. 2013; Christian et al. 2015; Gu et al. 2007; Gu et al. 2008; Hoerling et al. 2014; 

Schubert et al. 2004). Poor vegetation growth during agricultural drought reduces crop and 

forage production which, in turn, threatens the survival of animals and the viability of the 

livestock business in the SGP (Garbrecht 2015). The agricultural drought of 2011 in Texas 

caused more than $7.62 billion in losses, with about half of the loss attributed to reduction in 

livestock production (AgriLifeToday 2011; Fannin 2012; Ziolkowska 2016). Thus, it is crucial to 

provide information about drought characteristics (e.g., spatial distribution of different drought 

durations in each year) and regional drought assessment (e.g., drought severity and regional 

susceptibility to drought) for agricultural end users and policy-makers in the SGP to facilitate 

drought mitigation and adaptation decisions (Otkin et al. 2015). 

Drought can be characterized from different perspectives reflecting the reduction of 

precipitation and/or its impacts on other factors, including runoff, streamflow, soil moisture, 

evapotranspiration (ET), and vegetation water stress (Fig. 1). Meteorological drought mainly 

focuses on deficits in precipitation. Hydrological drought depicts inadequate streamflow and/or 

surface and ground water levels. Agricultural drought occurs when vegetation experiences stress 

due to inadequate soil moisture availability, reflecting a more ecosystem point of view on the 
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impacts of drought. As agricultural drought develops, the plant canopy experiences a loss of 

vegetation water content and pigments such as chlorophyll, and eventually a loss of green leaves. 

Many drought indices, based on anomalies or percentiles in relevant hydrologic variables 

(e.g., precipitation, soil moisture or ET), have been developed to monitor various classes of 

drought (Hayes 2006; Zargar et al. 2011). Among these, two meteorological drought indices, 

namely the Palmer Drought Severity Index (PDSI) (Palmer 1965) and the Standardized 

Precipitation Index (SPI) (McKee et al. 1993, 1995), are currently most widely used. These early 

standard meteorological drought indices (e.g., PDSI and SPI) tend to focus on precipitation 

deficiencies at coarse spatial resolution (i.e., the climate division level). They provide valuable 

information for policy makers to implement drought mitigation actions; however, these indices 

are usually based on sparsely located long-term meteorological stations. Hydrological drought 

indices often use basin-specific parameter values, making it difficult to compare among basins 

(Dai 2011; Mu et al. 2013). Agricultural drought indices have been developed to monitor soil 

water deficits and the subsequent crop failure in the drought. The Crop Moisture Index (CMI), 

which is related to PDSI, is able to track the agricultural drought by considering soil moisture 

deficit in the top 1.5 meters of soil column (Palmer 1968). The role of vegetation was not 

reflected in the early stages of the development of agriculture drought indices because of the 

complexity of different plant physiological processes and lack of data (Palmer 1965). Most 

agricultural drought indices use soil moisture to indicate drought and do not explicitly consider 

vegetation water stress (Narasimhan and Srinivasan 2005; Palmer 1965, 1968).  

Satellite remote sensing is providing consistent observations of vegetation dynamics, 

which can be incorporated into drought monitoring over large areas at high spatial and temporal 

resolutions (AghaKouchak et al. 2015; Wardlow et al. 2012a). Remote sensing products such as 
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vegetation greenness indices, vegetation water indices, and land surface temperature have been 

widely used to monitor and assess drought conditions since the 1980s (Gao 1996; Hayes et al. 

2012; Peters et al. 2002; Rouse Jr et al. 1974; Wan et al. 2004). At the late stage of a severe 

drought, plant leaves often wither and abscise, resulting in a change in leaf area index (LAI) that 

can be tracked by the Normalized Difference Vegetation Index (NDVI) (Fig. 1) (Cheng et al. 

2006). NDVI, calculated as a normalized ratio between red and near-infrared (NIR) bands 

(Tucker 1979), has been incorporated into different drought products such as the Vegetation 

Condition Index (VCI) (Kogan 1995), Vegetation Drought Response Index (VegDRI) (Brown et 

al. 2008), and Vegetation Temperature Condition Index (VTCI) (Wan et al. 2004). The 

Enhanced Vegetation Index (EVI) is another vegetation greenness index with improved 

sensitivity to soil background and atmospheric condition (Huete et al. 2002). At the middle stage 

of agricultural drought, plant photosynthetic capacity is harmed by reduction of leaf chlorophyll 

content, which can be approximated by EVI as a proxy (Lawlor 2002; Medrano et al. 2002). At 

the early stage of agriculture drought, vegetation water stress is often characterized by the 

decrease of leaf water content. Water-related vegetation indices such as the Normalized 

Difference Water Index (NDWI) (Gao 1996) and the Land Surface Water Index (LSWI) (Xiao et 

al. 2004), calculated as a normalized ratio between NIR and shortwave infrared (SWIR) bands, 

are more sensitive to the leaf water content and water stress than are vegetation greenness indices 

such as NDVI and EVI (Gu et al. 2007; Gu et al. 2008; Jackson et al. 2004; Maki et al. 2004; 

Wagle et al. 2014). Consequently, recent studies have shown the ability of LSWI to track 

drought-impacted vegetation or to monitor drought (Bajgain et al. 2016; Bajgain et al. 2015; 

Chandrasekar et al. 2010; Wagle et al. 2015; Wagle et al. 2014). 
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Wagle et al. (2014) examined the seasonal dynamics of LSWI derived from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) and the CO2 flux data at two tallgrass prairie 

eddy flux tower sites during 2005-2006 in Oklahoma, and reported that LSWI < 0 during the 

growing season indicates drought-impacted vegetation. Another study (Bajgain et al. 2015) used 

LSWI to assess and track drought conditions at two tallgrass prairie sites in Oklahoma during 

2000-2013 and showed that LSWI < 0 was corresponded well with moderate or severe drought 

categories indicated by the United States Drought Monitor (USDM) (Svoboda et al. 2002). 

Another follow up paper validated the LSWI-based drought algorithm for 113 Mesonet stations 

across Oklahoma and showed that LSWI is sensitive to rainfall variations and can be used as an 

indicator of drought occurrence (Bajgain et al. 2016). Based on these previous site-level findings 

(Bajgain et al. 2016; Bajgain et al. 2015; Wagle et al. 2014), we hypothesize that the LSWI-

based drought algorithm can be applied to assess the drought dynamics of tallgrass prairie at the 

regional scale such as in the SGP.  

The specific objectives of this study are (1) to apply the LSWI-based drought algorithm 

in the tallgrass prairie of the SGP during 2000-2013;  (2) to analyze the impacts of precipitation 

distribution on different drought patterns; and (3) to compare the LSWI-based drought map with 

other U.S. national drought products such as the Evaporative Stress Index (ESI) (Anderson et al. 

2011; Anderson et al. 2007; Otkin et al. 2013), VegDRI (Brown et al. 2008), and USDM 

(Svoboda et al. 2002), during normal, summer drought, and growing season drought years.  

2. Materials and methods  

2.1 Study area 
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This study focuses on the SGP region in the U.S., specifically including Kansas (KS), 

Oklahoma (OK), and Texas (TX) (Fig. 2). These three states are known for extensive ranching 

and farming. The mean annual precipitation (MAP) shows a decreasing gradient from east (1400 

mm) to west (200-400 mm) across the region (http://www.prism.oregonstate.edu/normals/). 

Precipitation is highly variable both inter- and intra-annually (Christian et al. 2015; Flanagan et 

al. 2017; Weaver et al. 2016). Maximum temperatures in summer are usually associated with low 

atmospheric humidity and strong winds, which in turn produce high rates of soil moisture 

depletion through ET, the main reason for summer drought (Dong et al. 2011). Soil types are 

mainly sandy and clay with small surface slopes (Carter 1994). Shortgrass prairies are distributed 

in the arid and semiarid western part of the SGP, while tallgrasses prairies are primarily located 

in the sub-humid eastern part of the region (Carter 1994). 

2.2 Data  

2.2.1 MODIS-based LSWI and NDVI 

The SGP is covered by six MODIS tiles (Fig. 2). The 8-day composite MODIS Surface 

Reflectance product at a 500-m spatial resolution (MOD09A1) (Vermote and Vermeulen 1999) 

was used to calculate LSWI and NDVI at 500 m. MOD09A1 includes seven-bands: blue (459-

479 nm), green (545-565 nm), red (620-670 nm), two near infrared (NIR1: 841-876 nm; NIR2: 

1230-1250 nm), and two shortwave infrared (SWIR1: 1628-1652 nm, SWIR2: 2105-2155 nm) 

bands at a 500-m spatial resolution. MOD09A1 also includes quality control flags for 

consideration of various image artifacts (e.g., clouds and cloud shadow). For each 8-day 

composite image, LSWI (Xiao et al. 2002a, b) and NDVI (Tucker 1979) were calculated using 

surface reflectance (ρ) from MODIS red, near infrared (NIR1) and shortwave infrared bands 

(SWIR1) as: 
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2.2.2 MODIS Land Surface Temperature (LST) data 

The MODIS 8-day Land Surface Temperature (LST) product (MOD11A2) at a 1-km 

spatial resolution from 2000 to 2013 was used to depict the nighttime LST (LSTnight) (Wan and 

Dozier 1996) and define the thermal growing season. Detailed descriptions of MOD11A2 can be 

found at https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11a2. The 

LST data were resampled from 1-km to 500-m spatial resolution using nearest neighbor 

interpolation. To evaluate the effects of resampling of LST on data processing, we compared the 

start date and end date of LST > 5
o
C (SOD and EOD) before and after resampling based on one 

tile of the MODIS (h10v05) LST data in 2012 (Fig. S1). The two figures in each group look very 

similar to each other. The means of SOD and EOD were close in the corresponding group 

(Table. S1). 

Fig. S1. Images for the start date and end date of LST > 5
o
C (SOD and EOD) before and after 

resampling. (a) SOD before resampling; (b) SOD after resampling; (c) EOD before resampling; 

(d) EOD after resampling. 

Table. S1 The comparison of the start date and end date of LST > 5
o
C (SOD and EOD) before 

and after resampling.  

2.2.3 MODIS Land Cover Type data 

The MODIS Land Cover Type product (MCD12Q1) was used to generate the grassland 

mask (Friedl et al. 2002) and then to define the tallgrass prairie layer. The IGBP (International 
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Geosphere-Biosphere Program) classification scheme was used, which includes a grassland class 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1).  

2.2.4 Precipitation data 

Precipitation data were downloaded from PRISM Climate Group, Oregon State 

University (http://prism.oregonstate.edu). The time series of precipitation datasets are modeled 

using climatologically-aided interpolation, which uses the long-term average pattern (i.e., the 30-

year normals) as first-guess of the spatial pattern of climatic conditions for a given month or day. 

Monthly precipitation data for 2000-2013 were used to generate summer precipitation (June-

August, JJA) and annual precipitation.  

 Precipitation data measured by automated weather stations covering Oklahoma were also 

included to evaluate the LSWI-based drought at site level. The dataset was acquired from a 

previous LSWI-based drought related study in Oklahoma (Bajgain et al. 2016). The precipitation 

anomalies were compared against LSWI anomalies at 113 Mesonet stations across Oklahoma for 

the drought years.  

2.2.5 Forage production data 

  Forage production, especially for hay, is affected by drought as most of the hay 

producing fields rely on rainfall. Hay production data from the United States Department of 

Agriculture - National Agricultural Statistics Service (https://www.nass.usda.gov/Quick_Stats/) 

were used to evaluate the LSWI-based drought depictions in each state included in the study. A 

simple linear regression model was used to examine the relationships between drought affected 

area and hay production for each state.  

2.3 Algorithms for mapping agricultural drought 
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Based on findings from our previous studies (Bajgain et al. 2016; Bajgain et al. 2015; 

Wagle et al. 2014) that the LSWI can assess the impact of drought on tallgrass prairie vegetation 

at individual sites, this study aims to expand its use to identify both summer drought and whole 

growing season drought (WGSD) conditions at the regional scale (SGP). Fig. 3 illustrates the 

steps in the drought identification algorithm as applied to MODIS time series data for a given 

year. Nighttime LST data from the entire year were first used to determine the temperature-

defined growing season, which is the time between the start and end dates for consecutive three 

8-day periods with nighttime LST > 5
o
C (Morison and Morecroft 2008; Zhang et al. 2015; Zhou 

et al. 2016). Second, the drop of LSWI below zero during summer (JJA) was used to indicate 

severe agricultural drought in summer (Bajgain et al. 2015). Third, the summer drought duration 

maps were generated by counting the number of days with LSWI < 0 (these days do not need to 

be consecutive) in JJA (DNLSWI). Years with all LSWI values less than zero during the LST-

defined plant growing season were defined as WGSD years (Fig. 3). 

As the LSWI-based drought algorithm was originally developed for the tallgrass prairie, 

we focused on tallgrass prairie area in this study. The tallgrass prairie map was generated as the 

study area mask based on the MODIS land cover maps (MCD12Q1) for 2001-2013 and LSWI 

data. The grassland layer from MCD12Q1 for 2001 was used as a close approximation of 2000 

since the MCD12Q1 dataset starts from 2001. Using these time series, the number of years that 

each pixel classified as grassland was computed, as well as the annual maximum value of LSWI 

(LSWImax) during the LST-based growing season. To exclude sparse vegetation areas, the 

tallgrass mask was generated by selecting those pixels that meet two criteria over 14 years: (1) 

the number of years as grassland is 7 or more (50% or higher) and (2) the number of years with 
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LSWImax > 0 is 7 or more (50% or higher) (Fig. 2 inset). This tallgrass prairie mask was then 

used to conduct the analyses of drought duration described later in the manuscript (Fig. S2). 

Fig. S2. Data processing workflow for LSWI-based drought assessment algorithm. 

2.4 Agricultural drought dynamics and comparison with other drought products 

Annual agricultural drought maps were created to show the evolution of agricultural 

drought over the study period. Each drought map includes both summer and WGSD conditions. 

The drought maps for three consecutive years (2010, 2011, and 2012) were selected to represent 

three different drought conditions (normal, WGSD, and summer drought). WGSD and summer 

drought years were identified from annual and summer precipitation anomalies (Fig. S3), 

respectively, based on the fourteen-year mean (2000-2013). A mean summer drought duration 

map was generated showing the average drought duration for 2000-2013. The occurrence of 

WGSD map shows the frequency of WGSD during the study area from 2000 to 2013. These two 

summary maps indicate the spatial pattern of agricultural drought in the tallgrass region in the 

SGP.  

Fig. S3. Annual, early spring, and summer precipitation deviation from the mean.  

Three U.S. national drought products, namely ESI, VegDRI, and USDM, were also 

compared with the LSWI-based drought product to characterize different drought conditions. 

The ESI (Anderson et al. 2013; Anderson et al. 2011; Anderson et al. 2007) quantifies temporal 

anomalies in the ratio of actual to potential ET using thermal infrared remote sensing 

observations and the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance 

model. It has been used to estimate the moisture stress of plants, as well as associated yield 

impacts (Anderson et al. 2016a; Anderson et al. 2015; Anderson et al. 2016b). VegDRI is a new 
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‗hybrid‘ index that integrates satellite-based observations of vegetation conditions, climate-based 

drought index data, and biophysical characteristics of the environment, including PDSI, SPI, and 

NDVI, to depict drought-related vegetation stress (Brown et al. 2008; Tadesse et al. 2015; 

Wardlow et al. 2012b). The USDM is a composite drought index which incorporates climatic, 

hydrologic, and soil data along with professional inputs in order to provide weekly maps of 

drought conditions (Svoboda et al. 2002).  

A direct comparison between the LSWI-based drought with ESI, VegDRI, and USDM is 

difficult due to their differences in temporal scales and spatial resolutions. ESI data are provided 

at weekly time steps composited over a period of 1-3 months. The VegDRI and USDM are also 

created weekly. In this study, we used 3-month ESI composites ending on the last week of 

August to compare with LSWI-based drought duration. The VegDRI and USDM for the last 

week of August were used in the comparison. The comparison was done for the period 2010-

2012, which represent three different drought conditions (normal, WGSD, and summer drought).   

2.5 The relationship between precipitation and LSWI-based drought duration 

Because agricultural drought is triggered in part by a precipitation deficit, it is worthwhile 

to investigate the relationship between precipitation and LSWI-based drought duration. Summer 

drought duration from LSWI-based drought maps and cumulative summer rainfall (JJA) from 

PRISM data for 2010-2012 were extracted and analyzed. The relationships between summer 

drought duration and summer rainfall were analyzed and the pattern of cumulative summer 

rainfall in different drought condition years are also presented. The site-level precipitation data 

from the Oklahoma Mesonet were also used to evaluate the LSWI-based drought. The spatial 

patterns of WGSD and annual precipitation deviation from the mean in 2011 (WGSD year) 
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demonstrate the effects of annual precipitation on the WGSD.  The relationship between WGSD 

affected area and the annual precipitation anomaly was also investigated. 

3. Results 

3.1 LSWI-based drought maps and comparison with ESI, VegDRI, and USDM 

The tallgrass prairie in the SGP was affected by frequent droughts during the study period 

(Fig. S4) and the drought duration was consistent with the decreasing precipitation gradient from 

east to west in most years (Fig. 2). Some areas experienced a short duration of summer drought 

even in a normal rainfall year (e.g., 2010, Fig. 4a). Central SGP experienced a long period of 

summer drought in 2012 (indicated by dark red color) (Fig. 4i). 2011 was the most severe 

WGSD year in OK and TX (indicated by black color), with more than half of the tallgrass prairie 

areas affected (Fig. 4e). For KS, 2002 was the most severe WGSD year (Fig. S4c).  

Fig. S4. Drought dynamics in the SGP for 2000-2013. 

Fig. 4 shows ESI, VegDRI, and USDM summer drought depictions for 2010-2012, and 

compares with spatial patterns in the LSWI-based drought duration. The LSWI-based drought 

map, ESI, and VegDRI provided more detailed drought information than did USDM because of 

their higher spatial resolution and number of drought categories. The LSWI-based drought map 

showed a short period of drought occurrence in the western SGP even in a normal year (2010) 

(Fig. 4a), while summer ESI indicated wet or near normal conditions for most of the areas (Fig. 

4b) and VegDRI showed scattered pre-drought and unusually moist with big non-

photosynthetically-active vegetation area (out of season category in the figure) (Fig.4c). In 2011, 

all drought products identified extended/severe drought conditions in the central SGP (Fig. 4e-h). 

The four indices were different in their depictions of the 2012 drought conditions (Fig. 4i-l), with 
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LSWI-based drought, ESI, and USDM showing extensive and severe drought for KS and OK, 

while VegDRI mostly indicating pre-drought to moderate drought. The increasing drought 

gradient from east to west in the LSWI-based drought map was not apparent in other drought 

indices except for VegDRI in 2011 (Fig. 4g). 

In general, the patterns of LSWI-based summer drought maps are similar with those in 

the ESI and USDM for most of the areas (Fig. 4). However, the VegDRI tends to show less 

intense drought conditions than other drought products for the same year. One possible reason is 

that VegDRI uses long-term climate variables such as 36-week SPI which responds more slowly 

than LSWI and ESI. Similar findings were identified in a study by Otkin et al (Otkin et al. 2016).   

LSWI, ESI, and VegDRI over the SGP tallgrass prairie regions were also compared 

quantitatively. Fig. 5 compares ESI values from the 3-month composite ending at the last week 

of August with LSWI-based drought duration for 2012, which is the period with severe summer 

drought. A clear trend of increasing ESI stress severity is identified with increasing length of 

drought conditions as identified by the LSWI. The dynamic range of ESI decreased along with 

the increasing summer drought duration (Fig. 5), indicating that LSWI-based drought and ESI 

agree better for severe drought than moderate or pre-drought conditions. The relationship 

between LSWI and VegDRI showed a stronger trend than did the relationship between NDVI 

and VegDRI (Fig. S5). 

Fig. S5. LSWI and NDVI vs. VegDRI for the last week of August in 2012. Only pixels classified 

as tallgrass prairie were plotted.  

LSWI values are compared to the USDM drought severity classifications from the last 

week of August in 2012 in Fig. 6. Most areas depicted as experiencing severe drought according 
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to the USDM (D3 and D4) also have very low LSWI values (Fig. 6b inset) such as western KS 

and southern TX (Fig. 6a). As two key indicators in the USDM are usually available only at the 

climate division scale, the USDM does not show much variability in drought severity within a 

climate division. In contrast, LSWI shows large heterogeneity at the sub-climate division scale 

due to the relative high spatial resolution of the remotely sensed inputs.  

3.2 LSWI-based drought duration patterns in the SGP 

Fig. 7 shows the dynamics of summer drought duration diagnosed by LSWI in three 

states (KS, OK, and TX) for 2000-2013. The summer drought pattern was highly variable among 

years in all three states. TX was affected by summer drought more often than KS and OK. 2012 

was the most severe summer drought year in OK, with relatively small area affected by short 

periods of drought and large areas affected by longer periods of drought (Fig. 7b). The frequent 

occurrence of summer drought indicates the susceptibility of the SGP to agricultural drought. Fig. 

8 shows the areas affected by WGSD across the region for 2000-2013. The pattern of WGSD in 

OK and TX were similar with 2011 as the most severe WGSD year, while it was 2002 in the case 

of KS. In the most severe WGSD years, the area affected by WGSD was more than double of the 

mean value.  

Fig. 9 shows the mean of summer drought duration, standard deviation of summer 

drought duration, and frequency of the occurrence of WGSD for 2000-2013. As expected, both 

summer drought duration and occurrence of WGSD increased from east to west, along the 

gradient of decreasing precipitation. Mean summer drought duration can be as long as one and a 

half months (six 8-day periods) (Fig. 9a) and WGSD occurred in six years (Fig. 9c) in the west 

of the study area. The variability in summer drought duration was largest in the central part (Fig. 

9b). 
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3.3 Relationship between LSWI-based drought duration and precipitation  

To quantify the contribution of precipitation deficits to drought development, we 

examined the relationship between precipitation and drought duration during the summer period 

and the entire year. The variation of the summer drought duration (indicated by error bar) was 

equally large for all precipitation ranges (Fig. 10), suggesting that summer precipitation is not the 

only factor determining summer drought duration. The cumulative summer precipitation 

(indicated by the relative frequency of precipitation) in 2010 (Fig. 10a) was slightly higher than 

in 2012 (Fig. 10c), whereas the summer drought duration was quite different, with much longer 

summer drought duration in 2012. More than 60% percent of the pixels had less than 100 mm of 

cumulative summer precipitation in 2011 and long periods of summer drought. (Fig. 10b).  

The LSWI anomalies were strongly correlated with summer precipitation anomalies (r
2
 = 

0.64) for the drought years (2006, 2011, and 2012) over 113 Mesonet stations across Oklahoma 

(Fig. 11a). The increasing summer precipitation anomalies resulted in bigger magnitude of 

anomalies in LSWI at most Mesonet stations. The drought intensity indicated by USDM was not 

highly correlated with the summer precipitation anomalies (Fig. 11b).  

Areas affected by WGSD increased from north to south in the SGP in 2011 (Fig. 12a). 

This trend correlates well with the annual precipitation deviation to the mean in 2011 (Fig. 12b). 

The mean value of the annual precipitation deficit in 2011 was 300 mm (Fig. 12b inset and Fig. 

S6) which is about one third of the long term mean annual precipitation (Fig. 2). Precipitation 

deviation from the mean (annual anomaly in 2011) in central and southern TX was as high as 

400 mm or more. The increasing temperature gradient from north to south might also have 

exacerbated drought in the southern region.  
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Fig. S6. Frequency distribution of the annual precipitation deviation from the mean in 2011. 

 To investigate the relationship between the WGSD affected area and annual precipitation 

anomalies, we plotted the ratio of WGSD affected areas to total state area against annual 

precipitation anomalies for all three states during 2000-2013 (Fig. 13). Overall, larger anomalies 

in annual precipitation resulted in larger areas affected by WGSD. The point in the upper right 

corner is associated with large annual precipitation anomaly in 2011, demonstrating the severity 

of 2011 Texas drought. 

3.4 Validation of LSWI-based drought against forage production 

 Fig. 14 show the relationships between areas affected by drought (summer drought and 

WGSD) and hay production in each state during 2000-2013. The hay production showed a 

significant negative relationship with areas affected by drought. The lowest hay production year 

was 2011 in KS and TX and 2012 in OK. This is consistent with our results that 2011 and 2012 

were the most severe drought years.  

4. Discussion 

4.1 Comparison of the LSWI-based drought algorithm with other drought products 

The LSWI-based drought algorithm uses LSWI values less than zero during the growing 

season to identify agricultural drought conditions based on the findings of previous studies at 

individual sites (Bajgain et al. 2015; Wagle et al. 2014). The SWIR band in LSWI is more 

sensitive to the canopy water content (high absorption by liquid water) than the red band used in 

NDVI (Gu et al. 2007; Gu et al. 2008; Jackson et al. 2004). Thus, the LSWI-based algorithm 

complements well with other NDVI-based drought products, as they together assess the impacts 

of drought on vegetation canopy from a loss of water to a loss of green leaves (Fig. 1). 
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Furthermore, previous study showed that LSWI provided an earlier signal of declining soil 

moisture than did NDVI and EVI (Bajgain et al. 2015) which might be useful for drought early 

warning. This study expanded the LSWI-based drought algorithm to include three conditions: no 

drought, summer drought, and WGSD, and then applied the algorithm at the regional scale 

(tallgrass prairie region in the SGP) to report agricultural drought conditions.  

Similar spatial patterns of LSWI-based summer drought maps with ESI and USDM 

(Fig.4), and strong relationships of low LSWI values with ESI (Fig.5) and USDM categories (Fig. 

6) during the severe drought indicate that LSWI can be used as a complementary drought index. 

The significant negative relationship between drought affected areas and hay yield further 

validated the reliability of the LSWI-based drought mapping. Using LSWI along with other 

commonly used vegetation indices such as NDVI and EVI can help improve the performance of 

current drought products. The LSWI-based drought algorithm completely depends on MODIS 

data and is easy to apply. It could be a complementary method for assessing agricultural drought 

in the tallgrass prairie at the regional scale with a spatial resolution of 500 m. 

4.2 Importance of precipitation amount and distribution in the year 

As expected, our results show that precipitation is a major factor for the occurrence of 

severe agricultural drought in tallgrass prairie since the regional agricultural drought pattern (Fig. 

9a and c) was highly correlated with the decreasing precipitation gradient from east to west. 

Central SGP had long summer drought durations and large standard deviations (Fig. 9a and b) 

because of large summer precipitation variations (Fig. S7). The orthogonal nature of the 

temperature and precipitation gradients (east-west oriented precipitation gradient and north-south 

oriented temperature gradient) (Basara et al. 2013) could also generate this pattern in the central 
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part of the SGP where the relative importance of temperature and precipitation varies in different 

years.  

Fig. S7. Standard deviation of summer precipitation. 

The total amount of precipitation in a year is important for vegetation. Large annual 

precipitation deficits in 2011 (Fig. 12) caused the occurrence of extensive WGSD in the SGP 

(Fig. 4e). The temporal distribution of precipitation is also equally important. The cumulative 

summer precipitation in 2012 was only a little bit lower than 2010 (Fig. 10), however, the 

drought condition in 2012 was much more severe (Fig. 4). The precipitation in early spring 

(March) was well distributed in 2012 (Fig. 15a). The ample precipitation in March 2012 (Fig. 

S3f and Fig. 15a) increased soil moisture and facilitated vegetation growth in spring (the 

anomaly of high NDVI is presented in Fig. S8). Summer rainfall was much less than the 

enhanced ET demand from abundant green vegetation, resulted in rapid depletion of soil 

moisture and severe summer drought in 2012. This result indicated that it was the joint control of 

precipitation and vegetation that generated the severe summer drought in 2012. It suggests the 

important role of vegetation itself for the occurrence of agricultural drought in addition to total 

amount of precipitation. This phenomenon has been reported by other studies (Otkin et al. 2013; 

Otkin et al. 2014; Otkin et al. 2016) and referred as ―flash drought‖ in which vegetation health 

rapidly deteriorates because the plants quickly exhaust soil moisture. Thus, LSWI-based drought 

does not only reflect precipitation anomalies to the historical mean as SPI does but is also 

sensitive to abnormal precipitation distribution in the year.  

Fig. S8. NDVI anomaly in early growing season of 2012 (March-May) relative to the baseline of 

2000 - 2011. The inset shows the distribution of area percent of NDVI anomalies. 
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4.3 Future work and challenges  

The LSWI-based drought algorithm, which only uses MODIS data as input, is easy to 

apply and has a higher spatial resolution (~500 m) than current operational versions of ESI, 

VegDRI, and USDM. Like most visible and thermal remote sensing algorithms, the LSWI-based 

drought algorithm has limitations during cloudy days when the land surface is not visible to the 

satellite sensor (Jensen 2009). Combinations of multiple satellite sensors and development of an 

appropriate gap-filling algorithm are needed to create a continuous dataset (Jin et al. 2013), 

thereby reducing the effect of bad observations (e.g., cloud cover). Another concern is the 

threshold values used in the algorithm. We used LSWI < 0 during the growing season as the 

indicator of severe agricultural drought in tallgrass prairie based on the findings of site level 

studies (Bajgain et al. 2015; Wagle et al. 2014). The LSWI threshold for other land cover types 

and regions might be different, which needs to be further explored. The identification of 

agricultural drought in sparse vegetation area (e.g. arid region) using LSWI is challenging as soil 

background can contribute more to the satellite observations and reduce LSWI values. In these 

cases, the lower threshold of relative change of LSWI values might be better. Also LSWI is 

related to vegetation water content, it is not able to depict drought during the non-growing season. 

Additional studies are needed to develop a LSWI-based drought severity scheme based on plant 

phenology and anomalies. In this study, we evaluated and reported agricultural drought in terms 

of severe drought duration in the summer and entire growing season, and drought severity at 

specific times was not included. Future studies need to compare the LSWI-based drought 

severity scheme at specific times (Bajgain et al. 2016; Bajgain et al. 2015) with ESI, USDM, and 

other drought products. Human and natural disturbances (grazing, mowing, and burning etc.) 
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could also affect LSWI, which needs to be incorporated using land use and land management 

data.  

The relationship between precipitation and drought needs to be further investigated as 

other studies indicated that high temperature can also contribute to the quick onset of drought in 

the SGP (Basara et al. 2013; Hoerling et al. 2014; Otkin et al. 2013; Otkin et al. 2016). The 

importance of vegetation in agricultural drought assessment needs to be emphasized in the future 

as precipitation does not always provide accurate drought assessment without considering the 

high ET demand by vegetation and available soil moisture in summer. Plant health can 

deteriorate rapidly during the summer through rapid loss of water because of their high ET. The 

ESI, an indicator of ET anomaly, is a good indicator to reflect the role of vegetation in 

agricultural drought development (Anderson et al. 2011; Anderson et al. 2007; Otkin et al. 2016). 

The importance of vegetation in drought development also emphasizes the necessity of 

investigating drought from the ecosystem perspective (AghaKouchak et al. 2015).  

The duration of summer drought, summer drought variation, and number of years with 

WGSD present the pattern of agricultural drought in tallgrass prairie in the SGP (Fig. 9). The 

LSWI-based drought algorithm can be used to assess the vulnerability to agricultural drought, 

and it has the potential to use for several applications such as vegetation production assessment, 

water demand/supply analysis, and bird migration and breeding (Brown and Brown 2014; 

Goddard et al. 2003; Wilhite 2005). The agricultural drought of tallgrass prairie in the SGP 

reduces hay production (Fig. 14), an important feed source for beef cattle production, especially 

in winter and early spring, which can threaten the beef cattle industry. A follow-up study will use 

the LSWI-based drought product to investigate the impacts of different drought types (e.g., 

summer drought and WGSD) and spatial patterns on hay and beef cattle production in the SGP.   



23 
 

5. Conclusion 

Based on the findings of previous studies about the ability of LSWI to track drought-

impacted vegetation in tallgrass prairie, this study expanded and applied a LSWI-based drought 

algorithm to map agricultural drought of tallgrass prairie in the SGP. The results are comparable 

to other widely used drought products (ESI, VegDRI, and USDM) in normal, WGSD, and 

summer drought years. The frequent occurrence of summer drought and WGSD indicates the 

susceptibility of the SGP to agricultural drought. The spatial pattern of drought duration was 

highly correlated with the decreasing precipitation gradient from east to west. TX was affected 

by summer drought more often than KS and OK. In the most severe WGSD years, the area 

affected by WGSD was more than double of the mean value. LSWI-based drought depictions are 

sensitive to both precipitation anomalies from the historical mean and abnormal seasonal 

precipitation distributions. The importance of vegetation in drought assessment needs to be 

emphasized in future drought studies. Incorporating LSWI other than NDVI into other drought 

products can help improve their performance. The LSWI-based drought algorithm, completely 

depending on MODIS data and with a spatial resolution of 500 m, can be a complement for other 

drought products for assessment of agricultural drought in the tallgrass prairie region. Future 

studies need to explore LSWI thresholds to identify agricultural drought and develop LSWI-

based drought severity schemes for other land cover types.  
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Figures 

 

Fig. 1. Different timescales of drought, highlighting observables of vegetation water stress 

expressed as remote sensing proxies. Only the primary factors affecting the remotely sensed 

vegetation indices are listed.    
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Fig. 2. Location of the Southern Great Plains (SGP) study area and the coverage of the tallgrass 

prairie (in the inset). MODIS tile boundaries are indicated as dark lines. The base map shows the 

30 year (1981-2010) mean annual precipitation over the region.  
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Fig. 3. A schematic diagraph of the seasonal dynamics of LST, LSWI, and NDVI during drought 

and non-drought years for a sample data point is located at 36.556481
o
N, -98.317713

o
W. The 

LST-defined growing season is depicted for the duration of nighttime LST > 5 °C.  
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Fig. 4.  Comparison of LSWI-based drought duration with ESI, VegDRI, and USDM in normal, 

WGSD, and summer drought years. (a) Summer drought duration and WGSD in 2010, (b) 

Summer ESI in 2010, (c) Summer VegDRI in 2010, (d) USDM 20100831, (e) Summer drought 

duration and WGSD in 2011 (f ) Summer ESI in 2011, (g) Summer VegDRI in 2011, (h) USDM 

20110830, (i) Summer drought duration and WGSD in 2012, (j) Summer ESI in 2012, (k) 

Summer VegDRI in 2012, (l) USDM 20120828.  
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Fig. 5. LSWI-based summer drought duration vs. 3-month composite ESI (JJA) in 2012. 
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Fig. 6. LSWI vs. USDM for the last week of August in 2012. The climate division boundaries 

are indicated by black polygons. Only pixels classified as tallgrass prairie were plotted. The inset 

in (b) showed the mean LSWI values in each category (D0, D1, D2, D3, and D4).  
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Fig. 7. Annual summer drought dynamics in three states (KS, OK, and TX) of the SGP for 2000-

2013. 
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Fig. 8. Areal percentage of the total tallgrass prairie area affected by the whole growing season 

drought (WGSD) in three states (KS, OK, and TX) of the SGP for 2000-2013.  
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Fig. 9. Summer drought and WGSD patterns in the SGP for 2000-2013. (a) Mean of summer 

drought duration for 2000-2013, (b) Standard deviation of summer drought duration, (c) 

Occurrence of WGSD for 2000-2013. The insert panel shows the frequency distribution of 

values. 
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Fig. 10. LSWI-based summer drought duration vs. summer precipitation in (a) 2010, (b) 2011, 

and (c) 2012. Relative frequency in the legend indicates the ratio of pixels with certain summer 

precipitation to the total pixels.  
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Fig. 11. Comparison of summer precipitation anomalies and LSWI anomalies (a) and USDM (b) 

in drought years (2006, 2011, and 2012) at 113 Mesonet stations across OK. The USDM drought 

intensity classes 0, D0, D1, D2, D3, and D4 are set to 0, 1, 2, 3, 4, and 5, respectively.   
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Fig. 12. WGSD vs. annual precipitation in 2011. (a) Distribution of WGSD in 2011, (b) Annual 

precipitation deviation from the mean (annual anomaly in 2011). The inset in (b) shows the 

frequency distribution of precipitation deviation. 
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Fig. 13. Relationship between the WGSD affected area and annual precipitation anomaly.  
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Fig. 14. Relationship between areas affected by drought and hay production in each state. 
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Fig. 15. Precipitation distribution in early (March) and peak growing season (June-August) 

according to rainfall events (%) with different rainfall sizes (25 mm rainfall bin size in the graph).   
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